A SURVEY OF THE BGG DESCRIPTION OF COHOMOLOGY OF FLAG VARIETIES, WITH
APPLICATIONS

JOSHUA KIERS

ABSTRACT. In these lectures we will follow the original paper of Bernstein, Gel’fand, and Gel’fand (Schubert cells
and cohomology of the spaces G/P) which identifies the cohomology of flag varieties W-equivariantly with certain
(sub)quotients of explicit polynomial rings. We will develop the Lie combinatorics necessary to identify (and prove)
“good” polynomial representatives with their Schubert class counterparts, along the way introducing the Bruhat order
and the famous divided-difference operators. We will develop an “integration” formula by way of application, and I will
explain how I used this in a crucial way for computer verification of two new instances of the Saturation Conjecture.

1. LECTURE 1

1.1. Notation. G is a complex semsimple Lie group, assumed to be connected and simply connected. H < B fixed
maximal toral and Borel subgroups of G. X = G/B the flag variety. N is the unipotent radical of B. g,b,b,n are
the respective Lie algebras. ® — h* is the root system (set of h-weights) of g w.r.t. h. The choice of B gives a set of
positive roots T < ®; let P~ = —®* denote the set of negative roots. Recall the injective composite map

Ng(H)/H — Aut(H) — Aut(h) ~ Aut(h*),

whose domain and image are both commonly known as the Weyl group W (the last isomorphism is the Killing form
identification); see [FHO04, Appendix D] for more details. For v € ®*, s, € W is the reflection across the hyperplane
orthogonal to v¥ in h*. A = {a1,...,a,} is the base of ® determined by B (equiv. by ®*); here r = dim H is
the rank of G. For ease of notation, s; means s,, and is called a simple reflection; W is generated by {s1,...,s,}.
0(-) : W — Zsg is the length function:
l(w) =min{k | w = s;, -+ ;. }
wq is the unique element of W of longest length.
To each w € W, associate the Schubert cell (resp. variety) C,, = Bw < G/B (resp. X, = Bw < G/B).

1.2. Overview. Recalling the Bruhat decomposition,

G = || BwB,
weW
we see that the C,, partition X. Each C,, is isomorphic to C/() as an algebraic variety, and the X,, naturally give
a cell decomposition of X. Therefore the fundamental classes pu(Xw) € Hap(w)(X) give a free Z-basis of the singular
homology of X. For more info, see [Spr98], [Ful96, Appendix B].
X has Poincaré duality, so the dual classes [X,,] € H2(dim X={w))(X) give a basis of the cohomology of X.

Question 1.1. Remember H*(X) is a graded ring. Do we already know this ring (i.e., have a presentation of it)?
Can we describe the basis elements [X,,]? Can we describe the W-action on it? Can we integrate forms on X ¢

By freeness of H*(X) and the universal coefficient theorem, H*(X;Q) ~ H*(X)® Q. In what follows it will
actually be simpler to keep H*(X; Q) in mind, and for ease of notation we will continue to use H*(X) for the rational
cohomology.

Let R = Qo] = Sym*(hg), where g is the dual Q-vector space to the subspace of h generated over Q by the
simple roots. Then there exists a map R — H*(X) as follows. First, we describe a linear map f : b, — H?(X) as
follows. To a weight w : h — C, we associate a 1-dimensional representation C_,, of B (N acts trivially). The diagonal
quotient G x g C_,, is naturally the total space of a line bundle £,, over G/B. Set f(w) = ¢1(L,,) to be the first Chern
class of that line bundle. By a universal property, this extends to a Q-algebra morphism R — H*(X).

Theorem 1.2 ([Bor53|,|JAH61]). 6 : R/J ~ H*(X) is an isomorphism, where J is the ideal generated by W -invariant
elements with no constant term. Furthermore, 0 is W -equivariant.

Remark 1.3. In fact, the H-equivariant cohomology H};(X) ~ R®gw R, so we should expect R Qzrw Q ~ R/J as
rings, where R G Q by multiplication by the constant term.

Exercise 1.4. Show that R/J ~ R®grw Q as rings.



2 JOSHUA KIERS

Here we explain the “W-equivariance” part of the theorem. Both rings in the above isomorphism have natural
graded (grade R by 2-degree) W-actions. The action on R is clear (induced by the linear action on bf). Topologically
speaking (see [Han73]),

X ~K/T,
where K is a maximal compact subgroup of G (“compact form”) and T' = K n H a maximal torus in K. The formula
w.k = kw1

indicates a left W-action on K /T which induces graded actions on Hy(X) and H*(X) by functoriality.

The contribution of [BGGT73] is to answer the second question above: that is, they (and we in these lectures) will
construct the polynomials on the R/J side corresponding to the basis elements [X,,]. In cohomological degrees 0 and
2, we already have a headstart:

Lemma 1.5.

(1) (1) = [Xu,]
(2) 0(wj) = [Xuwys,] for a fundamental weight w;.

Proof. The first statement is clear by convention.

For the second statement, we calculate the divisor of zeros of a section of the line bundle £, ; this will give an
element in the Chow group A'(X), which we may identify with H2(X), and this is a valid method of calculating the
Chern class (see [Har06, Appendix A.3]).

To that end, we remark that sections of L, can be identified with algebraic functions f : G — C satisfying

f(gb) = w;(b)f(g)

for all g € G,be B. Exercise: show this. Furthermore, there exists such a function f which also satisfies

f(ug) = f(g)

for all u e N.
Let z;(t) = exp(tXy,),z—(t) = exp(tX_,,) for any ¢ = 1,...,r, where the X,s are a (certain) standard basis for g.
Then
xi(t)si = x_i(t_l)l‘i(—t)taiv,
here t* = exp(tH,,). There exists a unique j such that wgs; = sjwg (since woA = —A), and wow;(t) = x_;(t)wp
(up to possibly a coefficient on the ¢). Therefore

s;0_; (D wos; = sjwor_i(t™ )i (—t)t™
2 (t)sjwos; = wosiw_i (t 1w (—t)t
Flwo) = wit*) f(wosiz—i(t™"))

71 fwo) = flwosiz—i(t™1));

so the limit as ¢ — oo shows that f(wps;) = 0. Since f is N-invariant, f vanishes on the entirety of Bwgs;B, so
necessarily on the closure X,,,s,. Note that f vanishes to order 1 on exactly this variety. ]

2. LECTURE 2

2.1. The Bruhat order.
Definition 2.1. For wi,ws € W and v € ®T, the notation
wy — Wa
means sywy = wy and L(wy) = l(w1) + 1. By w < w’ we mean there is a sequence
w=w; 5wy s wp = w.
Exercise 2.2. Show that < establishes a partial order on W .
Remark 2.3. We get the same partial order if we stipulate instead that wis, = wy and (wz) = £(wy) + 1.

The Hasse diagram for type As:
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515281 = S$285152

We recall a few results from any standard course in Lie algebras; see for example [Hum72, §9.2, 10.2, 10.3]:

Proposition 2.4.
1

(1) For any ye T, we W, sy = ws,w ',
(2) For «; € A, s; permutes the positive Toots other than .
(3) For some (possibly repeated) indices {i;}, if
Siy v Sig_1 Qi
s negative, then for some index 1 < p < g,

Siq 0 Siq = 84, """ Sipilsierl LR Siq,y

(4) If w = s; ---si, is a minimal-length expression of w, w(wy,) is negative.
(5) L(w) equals the size of ®* N w10~ and L(w) = L(w™1).

Lemma 2.5. Let w = s;, ---5;, be a reduced decomposition. Set y; = s;, TS, Qg (71 = «;, ). Then the roots
Y1,. .., are distinct and comprise the set @t N wd~.

Proof. Distinctness:
Assume v; = v, j < k. Then we arrive at

Q. = 8.8

J J ip—1 @

k
a’ij = SijJrl e Sikaik7
which contradicts length-minimality of the subword s;,,, -+ s;, .
One inclusion:

Each «; = 54, -+ 54, (—ay,), which is positive by length-minimality. Also,
Vi = w(siesie—1 T Sijaj)v

and the part in parentheses is negative again by length-minimality. So {v;} < ®* nw®~.
The result follows since each set has size f(w) = /. O

Corollary 2.6.
(1) Let w be as before and v € ® such that w™'y € ®~. Then for some j,

s’ysil PN Sij = Sil P Sij—l

(2) ForweW and v e ®F, {(w) < {(syw) if and only if w 'y e ®T.
Exercise 2.7. Prove the corollary.
Now we examine neighbourhoods in the Hasse diagram:

Lemma 2.8. Let wy,ws € W,o; € A,ve€ &, and assume o; # v. Set ¥ = s;v; note v € . Then

w2 w2
X« /
S; W2 = S; W1
/’Y" m
w1 w1

Proof. Let us prove ( = ). Note that {(w2) = ¢(w;) is given. Since wy = s;syw1 = sys;w; it suffices to prove
(s;wr) < £(ws). Since s;wy = s,ws, we verify this by checking wy ' is negative: wy 'y = wy 's;9" € 7. O

We take that local statement and extend it a little bit:
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Lemma 2.9. Given w < w’ and a; € A,
(1) either s;w < w' or sjw < s;w';
(2) either w < s;w’ or s;w < s;w'.

Proof. Let us prove the first statement.
Take a path
w=w; = wy — o wgp =w.
Of course, if s;w — w or if s;w = ws, the first case holds. So assume w — s;w and s;w # ws.
We will induct on k.
Case k = 2: apply previous lemma immediately.
Inductive step: we have s;w < s;we. Now consider the pair (wa, w’).

oy Qi .
Corollary 2.10. Let a; € A and wy — w, we —> wh. If one of wi,w) is smaller than one of wq, wh, then
wy < wz and wi < wh.

Proof. Case w| < wsq: trivial.

Case w] < wh: equality gives trivial. Else w] < wq (previous case) or w; < ws, as desired.

Case wy < w): we cannot have equality, since then w] = ws but have different lengths. So w; < wh and either
wy < w) (previous case) or wj < wq (previous case).

Case w; < wq: then wy < wj (previous case).

|
Finally we come to a third characterization of the Bruhat order:

Proposition 2.11. Let w e W, and let w = s;, -+~ 54, be a reduced word. For ease of notation, set t; := s;, (the t;s
are not all necessarily distinct).
(1) If1<j1 <...<jp <l andw' =tj ---t;,, then
w < w

(2) If w' < w, then w' has a representation of the above form for some {j1,...,jx}-
(3) If w' — w, then there exists a unique index p such that

w' =11 tp_1tpr1 - te

Proof. Claim (3) is essentially Corollary 2.6(1). Uniqueness follows from a contradiction given ¢, -ty = tp---tg_1.
Claim (2) follows from claim (3), since the expression in (3) is already reduced!
Claim (1) we will show by induction (the base case is obvious). If j; > 1, then w’ < ¢5---¢; by hypothesis, and
w' < tyw < w. If j3 = 1, then t;w’ < t;w by hypothesis, and w’ < w by Corollary 2.10.
([l

There is a fourth characterization of the Bruhat order, more geometric in nature.

Proposition 2.12 ([Ste67]). Let w,w’ € W. Then
w<w = X, S Xy

BGG reprove this result explicitly ([BGGT73, Theorem 2.11]). Another proof follows from the same kind of limit
analysis as in our proof of Lemma 1.5.

2.2. Divided difference operators. Let R = Q[o;], I = RW, I, < I the subring of elements with no constant
term, and J the ideal generated by I, .

Definition 2.13. For v € ®, we define for f € R

Avf:y

(note that this is well-defined!).

Lemma 2.14.
(1) A, =—A,, A2 =0.
(2) wA Wt = Ay,
(3) s4Ay = —Aysy = Ay sy = —vA, +1=A,y—1.
(4) Ayf =0 = sy f = f.
(5) AyJ < J.
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(6) For x € hos the commutator of A, with multiplication by x is

[Ay, x] = x(v")s5-

Exercise 2.15. Prove the lemma.

3. LECTURE 3

3.1. Divided difference operators, continued. For simplicity, A; means A,, for simple root «; € A.
The divided difference operators satisfy the following crucial property:

Theorem 3.1. Let a;,,...,q;, be a sequence of simple roots. Set w = s;, -+ -s;, and A, ;) = Ay 0---0A;,. Then
(1) If b(w) < £, Ag, .. M) =0.
(2) If t(w) = £, Ag,....i,) does not depend on the decomposition w = s;, ---8;,; in this case we define Ay
Ai,..ie) -

Proof. We proceed by induction on ¢, the case ¢ = 1 being trivial.
For (1), examine v = s;, -+ 8;,_,. If £(v) < £—1, then by induction we are done. Else, £(v) = £—1 and {(w) = £—2.
Since £(w™t) < £(s;,w™'), way, > 0. So for some index j,
SigSig_1 "7 Si; T Sig_q " Sijyas

thus s;, -+ -si,_, = si;,, "+ 8,; furthermore, these are both reduced decompositions. By induction,

AijO~~~OAi271 =A1'j+1 OA’LZ’
therefore A;, o---0A;, , =A;, 00 Afe =0
For (2), we introduce operators
Biy,.ie) 7= Sip - Si Al ie)-

Put wj :=s;,---s;;. Then

1 -1
Biy,ip) = w2 A wy ' wzAgwy - wpAs, wi A,
— w2 w3 We .
7Ai1 OAiz o OAW 1OA“5’
where AY := wA,wh
Lemma 3.2.
¢
[Bir i) X] Z X(wj 10 Jwj 1wy B(zl, RERRP!

J=1
Proof. First,
[Blaai] = [452 0200 A40]

4
= DA AT ] A,
j=1

i
¢
— W -1 Wi+1 — ) v
Observe that sy, a, = wjr1w; and [A; 7, x] = X(’w]_Haj )Sw;1a;- Therefore
2 wj —1 fWj+2 .
Ty = x(wjpraf AT - A7 wjpw; A 777 Ay,

One checks that

W1 -1 _ —1 4%ig" S/L;“'sikﬂ
A Wip1W; = Wj1W; Aik ,

so we may more simply write

T_] - X(ijrlaj )wj+1wj B(il,n-,ij,n-,ig)’

as desired.
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Now fix a 1 < j <. If £(s; -5, -+ s3,) < {—1, then T; = 0 by inductive hypothesis.

r

Otherwise, s;, -+ 8;, -+ 8;, = w’ —> w where

J
Y=8i Sij—laij?

and

x(wjriaf ) = w'x(w'wjaf) =w'x(si, s, ) = w'x(y").

Furthermore,

= wj+1wj_1w’*1A ~ =w Ay

—1
Wj+1W; B (CHENREN)

(RN FREN)

using the inductive hypothesis.
Since all w’ 2> w appear in the form above, we have

[Biy,ie) X] = Z w'x (Y )w T Ay
The RHS does not depend on the choice of reduced word for w! The result follows then from the following lemma. O
Lemma 3.3. Let B be an operator on R such that B(1) =0 and [B,x] =0 for all x. Then B =0.
Proof. Thus B vanishes on any monomial xi - - - xs- |

We actually derived the following useful corollary, which we will use later to produce a formula for multiplication
by Chern classes.

Corollary 3.4.
[w™ A, x] = D wx(v)w " Ay

>
w'—w

3.2. Schubert classes in homology as operators on R. Let S; = R}, where R; is the (Z)ith graded piece of R;
set S = @S;. There is a natural pairing
(,) : Si X Ri - Q

which we extend to S x R — Q by 0. Since Ho;(X) and H?(X) have a perfect pairing, we expect to see a dual basis
in S to the cohomology Schubert classes in R (more precisely in R/J). One can show that the dual basis to {[X,]}
under this pairing is {@(Xw.w)}; this follows from some relatively straightforward intersection theory, see for example
[Ful98, Chapter 19]. In fact, the perspective of [BGG73] is to produce the basis {u(X,)} in S and use it to make
explicit the dual polynomials {[Xygw]} in R/J.

Toward that end, we define some operators on S. First of all, W acts naturally on S since it does on R. For y € hf’@,
we denote by

x*:8—>S

the adjoint to the operator x- : R — R. Likewise, we let F, be the adjoint of A,, and F), that of A,,. We already have
the following results:

Theorem 3.5. Let o;,,...,q;, be a sequence of indices, and set w = s;, -+ - S;,.
(1) If {(w) < ¢, F;,--- F;;, = 0.
(2) If L(w) = ¢, F;, --- F;, depends only on w and equals F,.
(3) X, Fowl = 25, o, w'x(vY) Fww

Set Dy, := Fy,(1). We will later see that D,, is identified with the Schubert fundamental classes u(X,,). We record
various properties of the D,, as follows:
Theorem 3.6.

(1) DwESg(w).
(2) Let we W and o € A. Then

{0, fwsa) = (w) 1
Fobu = { Dus,s Hwsa) = fw) +1
(3) For X € h(a; X*Dw = Zw/lnu w/X(7v>Dw'
(4) Forwe W and a € A,
— D, l(wsy) = (w) —1
SD‘Dw = *Dw + Zw’l)ws w/OL(’Yv)Dw’v é(wsa) = g(w) +1
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(5) Let we W, £ = L(w), and choose X1,...,X¢ € b Then

(Duw,x1--xe) = Y xa(nw) - xe(w),

. . Y1 e -
the sum running over all chains e = wy -+ —> wy = w1,

Proof. (1) is obvious.

(2) follows from Theorem 3.5(1).

(3) follows from Theorem 3.5(3) since x*(1) = 0.

For (4), Lemma 2.14(3) shows that the action of s, on S is equal to that of a*F, —id. So the result follows from
(2) and (3) combined.

Finally, (5). Observe that if w’ > w, then w'sy—1, = w, therefore

-1 w Ty g

and (note w'~ !y is positive)

so the result follows from induction on ¢ and (3).

Define a new set of operators ﬁw on R by the rule

f)w(f) =0(f) 0 pu(Xw)

if f is homogeneous of degree ¢(w), extending by 0 in the natural way. Thus we may think of ﬁw € Syw)- The
following is the geometric crux of the entire paper:

Theorem 3.7. ﬁw = Dy.
Proof. The trick is that it suffices to show ﬁw =1 and
X*Dy = D, wx(y")Dur
for every x € b, thanks to induction on ¢(w) and Theorem 3.6(3).
Recall from algebraic topology that if z € H¥(X), ce HY(X), and y € Hy1;(X),
z(eny) = (cv2)(y);
therefore for any z = 0(f) e H*(")=2(X),

(*Du, ) = (Du, x - ) = (e1(Ly) U 2) A p(Xw) = 2 U (e1(Ly) N (X)),

and the proof reduces to showing

(1) p(Xw) ner(Ly) = D) wx(v)u(Xuw).

By functoriality (i.e., f«(f*0 n€) = n fyre whenever this equations makes sense), we may interpret (1) as taking
place in the homology and cohomology of X, itself. A result from algebraic topology says that if o is a nonzero section
of £, and it has divisor

dive = Z m;Ys,
then
Xu nver(Ly) = > mip(Yi),
provided that X,, is nonsingular in codimension 1. For a proof of this latter fact, see [BGG73, Proposition 4.3].
Now, both sides of (1) are linear in x, so writing y = A — X’ for regular dominant A, \’, we may reduce to the case

X = A is regular dominant. Let V' be an irreducible representation of G with highest weight A, and consider the line
bundle 7y on P(V') given by the total space
ny ={(P,¢)|¢: P> C,PcV,dimP = 1};
that is, n, = O(1). Since B acts trivially on the line {(vy) of highest weight in V', there is a natural embedding
i:G/B — P(V). It is easy to verify that i*(ny) = E.
Define a linear functional ¢, : V' — C by
bulvy) = o H=0
WAl 0 vy, is a weight vector with weight different than w,
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extending by linearity. Then ¢,, induces a global section o of O(1). By definition, o vanishes nowhere on the cell
NwB/B < X,,. Therefore div(o) is supported in
U Xw’;

;2
w' —>w

furthermore, the X,s are irreducible, so div(o) = ] a, X, for some integers a, = 0. We can calculate a., as

w' > w
the multiplicity of vanishing of the section §*¢ pulled back via the map ¢ : P* — X, that sends 0 to w’'B/B. This in
turn equals the order of vanishing of

bw (exp(tE—’Y)Uw’A) = th/A(WV)
at t = 0, so the proof is complete.
O

3.3. Polynomials in cohomology. Let H denote the subspace of S dual to J under the pairing (,). Since 1 is
clearly in H and since the F, fix H, we see that each D,, € H.

Theorem 3.8. The set {D,,} forms a basis of H.

Proof. We first argue that the D,, are linearly independent (I suppose this already follows from having identified them
with the Schubert fundamental classes, but here is a direct algebraic proof). By Theorem 3.6(5), (Dyy, o %)) > 0
(the pairing of p with any positive root is strictly positive). So in particular D, # 0.

Assume for contradiction that there is a nontrivial dependence relation

YlewDy =0,
and find a @ of minimal length so that ¢z # 0; set £ = £(w) and k = £(wp). Find simple reflections s;, , ... s;,_, so that
WS4, *+* Sip,_, = Wo.
Then by repeated application of Theorem 3.5,
F;
F;

++ Fy, Dy = Dy
o F; Dy =0

k—¢
k—¢

for any w # w such that ¢(w) = ¢. Applying F;,_, - - - F;, to our sum, therefore, we arrive at c¢3 D,,, = 0, a contradiction.
Second, we show that the D,, span. To verify that

@ QD, — H
is surjective, it suffices to show that the dual map is injective. That is, we must show that if f € R satisfies (D,,, f) =0
for all w, then f € J. It suffices to prove this just for homogeneous f, and we do so by induction on degree of f, the
case deg f = 0 being clear.
Suppose f has degree d > 0. For any v € A and w € W, we observe that
| (Duwsas [) =0 L(wsy) = L(w) +1

(DwaAocf) - { O f(wsa) — g(w) _ 1;
therefore by induction A, f € J. Rearranging, f — s, f € J. It follows readily that f —wf € J for any w € W; now we
average:

1
f BET 74k 'U}f € J7
"2
but of course the term ﬁ Dwew Wi s itself in J. So f e J.
O

By construction, H and R/J have a nondegenerate pairing induced from (,). Already, this gives a new proof that
R/J has finite Q-dimension. Now let P, € R/J be the dual basis to D,,. We immediately know the following:

Theorem 3.9.
(1)

(2)
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(3)
Py, l(wsy) = L(w) +1
SocPw = { _ Y

4. LECTURE 4
4.1. Structure of R. Amazingly, then, we have the following corollary:

Corollary 4.1.

PU) = Alj e Ailp’woa
where w = wos;, - -+ s;, and L(w) = L(wo) — L. In other words, Py = A1y, Pu,. More generally, P, = Ay-1,,P, when
v 15 a left subword of some reduced expression for w.

So in our quest for explicit polynomials, we reduce to finding P, .

Theorem 4.2.
Py,

1
W n v mod J.
yeD+

The proof is somewhat lengthy and technical, see [BGG73, Theorem 3.15].

Some other properties of the polynomials are:

Proposition 4.3.
(1) Set k = {(wp). Another expression for Py, is

Py, = pk/k! mod J

(2) Suppose wy,wy € W, l(wy) + £(we) = k. Then Py, Py, = 0 if w1 # wowa, and Py, Pyyw, = Pw
(8) For any f € R, one may write

0

f: prfw

weW
where f, € RV and the P,, are fized homogeneous lifts of the P,,.
Proof. Let us prove (3), for example.

We proceed by induction on deg f. If f has degree 1, the statement is clear.
Take deg f = k, and let g collect the deg < k terms of f. Then f — g is homogeneous of degree k. Then

(Dwa f - g) =0
unless £(w) = k, so take wy, ..., w; to be the elements in W of length k, and set ¢; = (Dy,, f — g). Define
p=1Ff—g-> cPu;

then clearly (D,,,p) = 0 for all w e W. Note that p is still homogeneous of degree k. We can therefore write

p= ZTij

with each r; € R, s; € RV, s; homogeneous, and s;(0) = 0. Then each r; can be chosen to have degree < k, so we

may write
ry = Z Pw’l“jﬂu

f:g-f—ch-]-:’wi—i—prErj,wsj

puts f in the desired form. O

for each j. Then

Now suppose we have picked specific lifts 13w0 = ﬁ [ I+ v and in general P, = A1, Puy- The following
theorem shows how to decompose R as a free R module of rank |W/|:

Theorem 4.4. The multiplication map
Ve .- -®oRY - R
(fwoa---afe) '_)wa[}w

is an isomorphism of R -modules.



10 JOSHUA KIERS

Proof. Surjectivity follows from the previous proposition.

For injectivity, we simply describe the inverse map by algorithm. Take f € R. We know f = >’ fwPy for some
choices of f,, € R"; we show how to recover them from f (so they are uniquely determined).

First, fu, = Aw,- To find fy,s, for the various s;, first set f' = f — fu,. Then fu,s, = Awys; f'- In general,
Apf = fu if f, = 0 for all £(v) > l(w): if w and w’ have the same length, then A, P, = AyAy—14,Puw,, but
ww' " twy # wy means the operator A, A—14, is 0. O

Corollary 4.5. By the algorithm, if f is homogeneous of degree k, then the (nonzero) f,, are each homogeneous of
degree k — {(w).
Example 4.6. Applying the above algorithm to x3 in the ring R = Q[x,y, 2], W = S3, we have
23 = (z+y+2)2* + (—yz — 22 — zy)z + (2Y2)1
This incidentally shows that x> € J.

Exercise 4.7. Express x*, y?, in the basis of the P,.

4.2. Integration formula. Take f € R and express f = - Py, fu as above. Then SX f=fopuXu) =Auwf =
fuwo (0). There is another way to calculate fy,,(0), (i-e., to apply Dy, ):

Theorem 4.8.

! fw)y |
H<I>+ ~y w;/v(il) U)f|0 - fwo (O)
Proof. We will first prove that
1
(_1)K(w)wf = fw .
Hq>+ Y w;W 0

Fix a w # wo; we can find some A; such that A;P, = 0. Fix a subset W = W such that every u € W is either in w
or in Ws;, but not both; i.e., W = W u Ws;. Then

1 1
(-1)*™yp, = D= [uPy, — us; Py]
H<p+ Y vew Hq>+ Y e
1
= Z (—1)"u; A; P,
H(bJr v uew
=0.
Therefore the result follows. O

Remark 4.9. FEvaluation at a point other than 0, given deg f < k, is valid.

Remark 4.10. This formula can also be distilled from the localization theorem in T-equivariant cohomology, after
passing back to reqular cohomology.

Corollary 4.11. Suppose g € J. Then g,,(0) = 0 for all w e W. Therefore:
(1) The alternating sum

1
] 2 (D wgly =0
weW

(2) If deg g < £(wo), then
1
= Z (—1) @ yg =
|W| weWw

with no evaluation.
Example 4.12. Back to our R = Q[z,y, 2] and W = Ss, 2%y + y*x is in J since
22y + vir — (2Py + y%x) — (22 4+ 2%2) + (VP2 + 22y) + (P 4+ 2?2) — (¥Pr + 2%y) =0

Exercise 4.13. Suppose f satisfies s;f = [ for some i. Then show { f = 0 two different ways: (1) by applying A,
and (2) by applying the formula above.
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4.3. Application to testing the Saturation Conjecture. Let C be the semigroup of triples (), i, ) of dominant
weights such that A + p + v is in the root lattice and

enANpNy == dim [V(NA) @ V(Np) @ V(N)]¢ # 0

for some N. Then by extensive work over the past few decades (see, for example, the survey by Kumar [Kum14]), we
know

Theorem 4.14. (A, pu,v) € C if and only if for certain (u,v,w) satisfying
[XU] ’ [Xv] ’ [Xw] = [Xe] € H*(G/R),
the inequality
(AN + o+ w ) () <0
holds. Here P; is the mazimal parabolic for simple index i, and x; the associated fundamental coweight.

Therefore finding the inequalities for C amounts to performing lots of cup products in cohomology and keeping track
of certain ones.
A famous conjecture asks:

Conjecture 4.15. If G is simply-laced, then
CNANp,Nv 70 = ¢y # 0.

This is known to fail for all non-simply-laced types. It had been verified for G of type A (any rank) by Knutson
and Tao [KT99] and type D4 by Kapovich, Kumar, and Millson [KKMO09]. I was able to verify it for types D5 and Dg
by first writing down the inequalities (by doing lots of cup products) and then checking the conjecture on the minimal
generating set of C: the Hilbert basis. Details can be found in [Kiel9).
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