

Weight Polytopes of Demazure Modules

Marian University

1 October 2022

- Let G be a complex, reductive Lie group , e.g. $SL_n(\mathbb{C})$, $Sp_{2n}(\mathbb{C})$, $SO_n(\mathbb{C})$.
- Fix a maximal torus $\mathcal{T} \subset \mathcal{G}$, e.g. diagonal matrices.
- Fix a Borel subgroup $B \supset T$, e.g. upper-triangular matrices.
- For each weight $\lambda : T \to \mathbb{C}^*$ which is dominant w.r.t. *B*, there is a unique (up-to-isom.) irreducible representation V_{λ} of *G*.

Each V_{λ} is a "highest weight" module: there exists a unique (up-to-scaling) vector $v_{\lambda} \in V_{\lambda}$ such that

▶
$$b.v_{\lambda} \in \mathbb{C}v_{\lambda}$$
 for all $b \in B$

•
$$t.v_{\lambda} = \lambda(t)v_{\lambda}$$
 for all $t \in T$

Let W be the Weyl group: $W = N_G(T)/T$. W acts on the lattice of all T-weights $X^*(T)$. Fix $w \in W$.

Note that $w.v_{\lambda}$ is well-defined up to scaling (and has *T*-weight $w\lambda$).

Definition

The Demazure module V_{λ}^{w} is the smallest *B*-subrepresentation of V_{λ} that contains $w.v_{\lambda}$.

In other words, $\mathcal{U}(\mathfrak{b})w.v_{\lambda}$.

 V_{λ} can be realized as the dual space to $H^0(G/B, \mathcal{L}_{\lambda})$, where G/B is the (generalized) flag manifold and \mathcal{L}_{λ} is the line bundle constructed topologically with total space

$$\mathcal{L}_{\lambda} = G imes_B \mathbb{C}_{-\lambda}$$
 \downarrow
 G/B

Likewise, V_{λ}^{w} is dual to

$$H^0(X_w, \mathcal{L}_\lambda|_{X_w}),$$

where X_w is the Schubert variety $\overline{BwB/B} \subseteq G/B$.

 V_{λ}^{w} is diagonalizable with respect to the *T*-action:

$$V_{\lambda}^{w} = \oplus_{\mu} V_{\lambda}^{w}(\mu),$$

where T acts on $V_{\lambda}^{w}(\mu)$ via the character μ .

Question

What is dim $V_{\lambda}^{w}(\mu)$ as a function of λ, w, μ ? For which μ is dim $V_{\lambda}^{w}(\mu) \neq 0$?

Define char $(V_{\lambda}^{w}) = \sum_{\mu} \dim V_{\lambda}^{w}(\mu)e^{\mu}$, an element of the ring of formal characters $\mathbb{Z}[e^{\mu}]$.

Define char
$$(V_{\lambda}^w) = \sum_{\mu} \dim V_{\lambda}^w(\mu) e^{\mu}$$
.

Theorem (Demazure Character Formula)

Write w as a reduced word $w = s_{i_1} \cdots s_{i_k}$. Then

$$\mathsf{char}(V^w_\lambda) = D_{i_1} D_{i_2} \cdots D_{i_k}(e^\lambda)$$

where

$$D_i(f) := \frac{f - e^{-\alpha_i} s_i f}{1 - e^{-\alpha_i}}$$

So calculation of any particular char(V_{λ}^{w}) is readily available.

This still doesn't answer our two questions combinatorially or efficiently.

In our work we focus on the second question.

Question

For which μ is dim $V_{\lambda}^{w}(\mu) \neq 0$?

We know for sure that every $\mu = v\lambda$ will appear with $v \le w$. Consider $P_{\lambda}^{w} = \text{Conv}\{v\lambda : v \le w\}$, a convex polytope. Is it possible that

$$V^w_{\lambda}(\mu) \neq 0 \iff \mu \in P^w_{\lambda}?$$

Let $G = GL_3$. Let $\lambda = \rho = \omega_1 + \omega_2 = (2, 1, 0)$.

е 51

е 51 52

They are all saturated

Is the support of char(V_{λ}^{w}) as saturated as it could be? In type A ($G = GL_n$), this was conjectured by C. Monical, N. Tokcan, and A. Yong (2017), with the verbiage of *key polynomials* and their *Newton polytopes*.

It was first proven by A. Fink, C. Mészáros, and A. St. Dizier (2017). In all types, this is known for $w = w_0$ (the whole V_{λ}) (folklore? Rado?).

Half-space description of P_{λ}^{w}

Perhaps a different description of P^w_λ will help prove the conjecture. **Motivation:**

Say $s_i w \leq w$, and we already know that $char(V_{\lambda}^{s_i w})$ is saturated.

 ${
m char}(V_\lambda^{s_iw}) \ igstaclesizet D_i \ {
m char}(V_\lambda^w)$

Observe that D_i will "spread out" the α_i root strings through weights supported in char($V_{\lambda}^{s_i w}$).

So for each $\mu_0 \in P_{\lambda}^w$, it suffices to produce $\mu = \mu_0 + k\alpha_i$, where $k \in \mathbb{Z}_{\geq 0}$ and $\mu \in P_{\lambda}^{s_i w}$. This can be controlled using the inequalities (i.e. faces) that determine $P_{\lambda}^{s_i w}$.

Inequalities from GIT

Via the Borel-Weil description,

$$\begin{split} \mu \in P_{\lambda}^{w} \iff V_{n\lambda}^{w}(n\mu) \neq 0 & \text{for some } n \geq 1 \\ \iff H^{0}(X_{w}, \mathcal{L}_{\lambda}^{\otimes n} \otimes \mathbb{C}_{\mu}^{\otimes n})^{T} \neq 0 & \text{for some } n \geq 1 \end{split}$$

Set $\mathbb{L} = \mathcal{L}_{\lambda} \otimes \mathbb{C}_{\mu}$. $H^0(X_w, \mathbb{L}^{\otimes n})^T \neq 0$ for some *n* means \mathbb{L} has semistable points on X_w . The Hilbert-Mumford numerical criterion for semistability:

$$\mu^{\mathbb{L}}(x,\eta) \leq 0,$$

for every one-parameter subgroup $\eta : \mathbb{C}^* \to T$, where $\mu^{\mathbb{L}}(x, \eta)$ measures the action of \mathbb{C}^* via η on the fibre of \mathbb{L} over the nearest fixed point to x.

If $x \in P(\eta)qB/B \cap X_w$, then

$$\mu^{\mathbb{L}}(\mathbf{x},\eta) = \langle \lambda, q^{-1}\eta \rangle - \langle \mu, \eta \rangle$$

Thus $\mu \in P^w_\lambda$ if and only if

$$\langle \mu, \eta \rangle \geq \langle \lambda, q^{-1}\eta \rangle$$

for every OPS η and $q \in W$.

That's too many inequalities.

It suffices to consider only those q such that $P(\eta)qB/B \cap X_w$ is dense in X_w (Hesselink).

It also suffices to consider only those η which are extremal in their Weyl chamber: $\eta = v \omega_j^{\vee}$, where ω_j^{\vee} is a fundamental dominant coweight.

Theorem (Besson-Jeralds-K)

 $\mu \in P_{\lambda}^{w}$ if and only if, for all dominant fundamental coweights ω_{j}^{\vee} and $v \in W$,

$$\langle \mu, \mathbf{v}\omega_j^{\vee} \rangle \geq \langle \lambda, q^{-1}\mathbf{v}\omega_j^{\vee} \rangle,$$

where $vP_jv^{-1}qB/B \cap X_w$ is dense in X_w .

The density criterion essentially boils down to a problem on the Bruhat decomposition: find the smallest x such that

$$Bw^{-1}BvB \subseteq \overline{BxB} = \bigcup_{x' \leq x} Bx'B$$

Answer: $x = w^{-1} * v$. (Demazure product: $s_i * s_i = s_i$)

Theorem (Besson-Jeralds-K)

 $\mu \in P_{\lambda}^{w}$ if and only if, for all dominant fundamental coweights ω_{j}^{\vee} and $v \in W$,

$$\langle \mu, \mathbf{v}\omega_j^{\vee} \rangle \geq \langle \lambda, \mathbf{w}^{-1} * \mathbf{v}\omega_j^{\vee} \rangle.$$

Interestingly enough,

$$w^{-1} * v = \max\{q^{-1}v | q \le w\}.$$

Did those inequalities help us? In classical types (A, B, C, D), yes. Remember we are trying to find k such that $\mu = \mu_0 + k\alpha_i \in P_{\lambda}^{s_i w}$. If μ lies on a face, we might need to divide by $\langle \alpha_i, v\omega_j^{\vee} \rangle$. That is at most 2 for classical types. There is always an integer between two distinct elements of $\frac{1}{2}\mathbb{Z}$.

Theorem (Besson-Jeralds-K)

If G has all its simple factors of types A, B, C, or D, then $char(V_{\lambda}^{w})$ is saturated for every choice of λ and w.

Faces of Demazure Polytopes are Demazure Polytopes

In affine types, we ask the same question.

Now our Schubert varieties X_w are parametrized by the affine Weyl group $w \in W_{af}$.

Though they are defined inside the infinite-dimensional affine flag variety, they are still finite-dimensional.

The weight space question for V_{λ}^{w} is still a GIT question for the finite-dimensional torus \widehat{T} acting on X_{w} .

We can still use GIT, but our one-parameter subgroups now come in three distinct flavors:

- η is conjugate to a dominant weight, or
- $-\eta$ is conjugate to a dominant weight, or

$$\blacktriangleright \langle \delta, \eta \rangle = \mathbf{0}$$

There will therefore be three different kinds of inequalities, due to the nature of deciding when

$$\mathsf{P}(\eta)\mathsf{q}I/I\cap X_w$$

is dense in X_w .

First, we describe three Demazure actions. The monoid $(W_{af}, *)$ acts on the set W_{af} in three different ways:

- Usual Demazure action: $w * v = \max\{qv | q \le w\}$
- Opposite action: $w *_{-} v = \min\{qv | q \le w\}$
- Semiinfinite action: $w *_{\frac{\infty}{2}} v = \max_{\leq \frac{\infty}{2}} \{qv | q \leq w\}$

Note that $\min(S) = \max_{\leq -}(S)$, where \leq_{-} is the opposite Bruhat order in the opposite flag variety.

Theorem (Besson-Jeralds-Hong-K)

 $\mu\in P^w_\lambda$ if and only if, for all dominant fundamental coweights Λ_j^\vee and $v\in W_{af}$,

$$\langle \mu, \mathbf{v} \Lambda_j^{\vee} \rangle \geq \langle \lambda, \mathbf{w}^{-1} * \mathbf{v} \Lambda_j^{\vee} \rangle,$$

and, for all dominant fundamental coweights Λ_j^{\lor} and $v \in W_{af}$,

$$\langle \mu, \mathbf{v} \Lambda_j^{\vee} \rangle \leq \langle \lambda, \mathbf{w}^{-1} *_{-} \mathbf{v} \Lambda_j^{\vee} \rangle,$$

and, for all finite fundamental coweights ω_i^{\vee} and $v \in W_{fin}$,

$$\langle \mu, \mathbf{v}\omega_j^{\vee} \rangle \geq \langle \lambda, \mathbf{w}^{-1} *_{\frac{\infty}{2}} \mathbf{v}\omega_j^{\vee} \rangle.$$

Let $G = \widehat{\mathfrak{sl}}_2$, $\lambda = \Lambda_0 + \Lambda_1$.

The pairings $\langle \alpha_i, \nu \eta \rangle$ can now be arbitrarily high, so as of yet we cannot apply the same approach to the saturation question.

Thank You