

Weight Polytopes of Demazure Modules

Joshua Kiers

w/ Marc Besson, Sam Jeralds, and Jiuzu Hong

Marian University

1 October 2022

What is a Demazure module?

Let G be a complex, reductive Lie group, e.g. $S L_{n}(\mathbb{C}), S p_{2 n}(\mathbb{C})$, $\mathrm{SO}_{n}(\mathbb{C})$.
Fix a maximal torus $T \subset G$, e.g. diagonal matrices.
Fix a Borel subgroup $B \supset T$, e.g. upper-triangular matrices.
For each weight $\lambda: T \rightarrow \mathbb{C}^{*}$ which is dominant w.r.t. B, there is a unique (up-to-isom.) irreducible representation V_{λ} of G.

What is a Demazure module?

Each V_{λ} is a "highest weight" module: there exists a unique (up-to-scaling) vector $v_{\lambda} \in V_{\lambda}$ such that

- $b . v_{\lambda} \in \mathbb{C} v_{\lambda}$ for all $b \in B$
- $t \cdot v_{\lambda}=\lambda(t) v_{\lambda}$ for all $t \in T$

What is a Demzure module?

Let W be the Weyl group: $W=N_{G}(T) / T$.
W acts on the lattice of all T-weights $X^{*}(T)$.
Fix $w \in W$.
Note that $w \cdot v_{\lambda}$ is well-defined up to scaling (and has T-weight $w \lambda$).

Definition

The Demazure module V_{λ}^{ω} is the smallest B-subrepresentation of V_{λ} that contains $w \cdot v_{\lambda}$.

In other words, $\mathcal{U}(\mathfrak{b}) w . v_{\lambda}$.

Geometrically speaking...

V_{λ} can be realized as the dual space to $H^{0}\left(G / B, \mathcal{L}_{\lambda}\right)$, where G / B is the (generalized) flag manifold and \mathcal{L}_{λ} is the line bundle constructed topologically with total space

$$
\begin{gathered}
\mathcal{L}_{\lambda}=G \times{ }_{B} \mathbb{C}_{-\lambda} \\
\downarrow \\
G / B
\end{gathered}
$$

Likewise, V_{λ}^{w} is dual to

$$
H^{0}\left(X_{w},\left.\mathcal{L}_{\lambda}\right|_{X_{w}}\right)
$$

where X_{w} is the Schubert variety $\overline{B w B / B} \subseteq G / B$.

Main question

V_{λ}^{w} is diagonalizable with respect to the T-action:

$$
V_{\lambda}^{w}=\oplus_{\mu} V_{\lambda}^{w}(\mu)
$$

where T acts on $V_{\lambda}^{w}(\mu)$ via the character μ.

Question

What is $\operatorname{dim} V_{\lambda}^{w}(\mu)$ as a function of λ, w, μ ?
For which μ is $\operatorname{dim} V_{\lambda}^{w}(\mu) \neq 0$?
Define $\operatorname{char}\left(V_{\lambda}^{w}\right)=\sum_{\mu} \operatorname{dim} V_{\lambda}^{w}(\mu) e^{\mu}$, an element of the ring of formal characters $\mathbb{Z}\left[e^{\mu}\right]$.

Main question

Define char $\left(V_{\lambda}^{w}\right)=\sum_{\mu} \operatorname{dim} V_{\lambda}^{w}(\mu) e^{\mu}$.

Theorem (Demazure Character Formula)

Write w as a reduced word $w=s_{i_{1}} \cdots s_{i_{k}}$.
Then

$$
\operatorname{char}\left(V_{\lambda}^{w}\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{k}}\left(e^{\lambda}\right)
$$

where

$$
D_{i}(f):=\frac{f-e^{-\alpha_{i}} s_{i} f}{1-e^{-\alpha_{i}}}
$$

So calculation of any particular char $\left(V_{\lambda}^{w}\right)$ is readily available.

Main question

This still doesn't answer our two questions combinatorially or efficiently.
In our work we focus on the second question.

Question

For which μ is $\operatorname{dim} V_{\lambda}^{w}(\mu) \neq 0$?
We know for sure that every $\mu=v \lambda$ will appear with $v \leq w$. Consider $P_{\lambda}^{w}=\operatorname{Conv}\{v \lambda: v \leq w\}$, a convex polytope. Is it possible that

$$
V_{\lambda}^{w}(\mu) \neq 0 \Longleftrightarrow \mu \in P_{\lambda}^{w} ?
$$

Example

Let $G=G L_{3}$.
Let $\lambda=\rho=\omega_{1}+\omega_{2}=(2,1,0)$.

$$
\begin{gathered}
(-1,1,0) \stackrel{-\alpha_{1}}{(0,-1,1)} \\
x_{0}^{x_{1}^{2} x_{2}} \\
x_{1}^{2} x_{2}+\alpha_{1} x_{1} x_{2}^{2}
\end{gathered}
$$

Example

Let $G=G L_{3}$.
Let $\lambda=\rho=\omega_{1}+\omega_{2}=(2,1,0)$.

$$
\begin{array}{cl}
x_{1}^{2} x_{2} & e \\
x_{1}^{2} x_{2}+x_{1} x_{2}^{2} & s_{1} \\
x_{1}^{2} x_{2}+x_{1}^{2} x_{3} & s_{2} \\
x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} & s_{2} s_{1} \\
x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3} & s_{1} s_{2} \\
x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3} & w_{0} \\
+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} &
\end{array}
$$

Example

Let $G=G L_{3}$.
Let $\lambda=\rho=\omega_{1}+\omega_{2}=(2,1,0)$.

$$
\begin{array}{cl}
x_{1}^{2} x_{2} & e \\
x_{1}^{2} x_{2}+x_{1} x_{2}^{2} & s_{1} \\
x_{1}^{2} x_{2}+x_{1}^{2} x_{3} & s_{2} \\
x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} & s_{2} s_{1} \\
x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3} & s_{1} s_{2} \\
x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3} & w_{0} \\
+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} &
\end{array}
$$

They are all saturated

A Saturation Conjecture

Is the support of $\operatorname{char}\left(V_{\lambda}^{w}\right)$ as saturated as it could be? In type $\mathrm{A}\left(G=G L_{n}\right)$, this was conjectured by C. Monical, N. Tokcan, and A. Yong (2017), with the verbiage of key polynomials and their Newton polytopes.
It was first proven by A. Fink, C. Mészáros, and A. St. Dizier (2017). In all types, this is known for $w=w_{0}$ (the whole V_{λ}) (folklore? Rado?).

Half-space description of P_{λ}^{w}

Perhaps a different description of P_{λ}^{w} will help prove the conjecture. Motivation:
Say $s_{i} w \leq w$, and we already know that $\operatorname{char}\left(V_{\lambda}^{s_{i} w}\right)$ is saturated.

$$
\begin{gathered}
\operatorname{char}\left(V_{\lambda}^{s_{i} w}\right) \\
\downarrow D_{i} \\
\operatorname{char}\left(V_{\lambda}^{w}\right)
\end{gathered}
$$

Observe that D_{i} will "spread out" the α_{i} root strings through weights supported in char $\left(V_{\lambda}^{\text {siw }}\right)$.
So for each $\mu_{0} \in P_{\lambda}^{w}$, it suffices to produce $\mu=\mu_{0}+k \alpha_{i}$, where $k \in \mathbb{Z}_{\geq 0}$ and $\mu \in P_{\lambda}^{s_{i} w}$. This can be controlled using the inequalities
(i.e. faces) that determine $P_{\lambda}^{s_{i} w}$.

Inequalities from GIT

Via the Borel-Weil description,

$$
\begin{aligned}
\mu \in P_{\lambda}^{w} & \Longleftrightarrow V_{n \lambda}^{w}(n \mu) \neq 0 & & \text { for some } n \geq 1 \\
& \Longleftrightarrow H^{0}\left(X_{w}, \mathcal{L}_{\lambda}^{\otimes n} \otimes \mathbb{C}_{\mu}^{\otimes n}\right)^{T} \neq 0 & & \text { for some } n \geq 1
\end{aligned}
$$

Set $\mathbb{L}=\mathcal{L}_{\lambda} \otimes \mathbb{C}_{\mu}$.
$H^{0}\left(X_{w}, \mathbb{L}^{\otimes n}\right)^{T} \neq 0$ for some n means \mathbb{L} has semistable points on X_{w}. The Hilbert-Mumford numerical criterion for semistability:

$$
\mu^{\mathbb{L}}(x, \eta) \leq 0
$$

for every one-parameter subgroup $\eta: \mathbb{C}^{*} \rightarrow T$, where $\mu^{\mathbb{L}}(x, \eta)$ measures the action of \mathbb{C}^{*} via η on the fibre of \mathbb{L} over the nearest fixed point to x. If $x \in P(\eta) q B / B \cap X_{w}$, then

$$
\mu^{\mathbb{L}}(x, \eta)=\left\langle\lambda, q^{-1} \eta\right\rangle-\langle\mu, \eta\rangle
$$

Inequalities from GIT

Thus $\mu \in P_{\lambda}^{w}$ if and only if

$$
\langle\mu, \eta\rangle \geq\left\langle\lambda, q^{-1} \eta\right\rangle
$$

for every OPS η and $q \in W$.
That's too many inequalities.
It suffices to consider only those q such that $P(\eta) q B / B \cap X_{w}$ is dense in X_{w} (Hesselink).
It also suffices to consider only those η which are extremal in their Weyl chamber: $\eta=v \omega_{j}^{\vee}$, where ω_{j}^{\vee} is a fundamental dominant coweight.

Inequalities from GIT

Theorem (Besson-Jeralds-K)

$\mu \in P_{\lambda}^{w}$ if and only if, for all dominant fundamental coweights ω_{j}^{\vee} and $v \in W$,

$$
\left\langle\mu, v \omega_{j}^{\vee}\right\rangle \geq\left\langle\lambda, q^{-1} v \omega_{j}^{\vee}\right\rangle,
$$

where $v P_{j} v^{-1} q B / B \cap X_{w}$ is dense in X_{w}.
The density criterion essentially boils down to a problem on the Bruhat decomposition: find the smallest x such that

$$
B w^{-1} B v B \subseteq \overline{B x B}=\bigcup_{x^{\prime} \leq x} B x^{\prime} B
$$

Answer: $x=w^{-1} * v$. (Demazure product: $s_{i} * s_{i}=s_{i}$)

Inequalities from GIT

Theorem (Besson-Jeralds-K)

$\mu \in P_{\lambda}^{w}$ if and only if, for all dominant fundamental coweights ω_{j}^{\vee} and $v \in W$,

$$
\left\langle\mu, v \omega_{j}^{\vee}\right\rangle \geq\left\langle\lambda, w^{-1} * v \omega_{j}^{\vee}\right\rangle
$$

Interestingly enough,

$$
w^{-1} * v=\max \left\{q^{-1} v \mid q \leq w\right\}
$$

Good Pairings

Did those inequalities help us?
In classical types (A, B, C, D), yes.
Remember we are trying to find k such that $\mu=\mu_{0}+k \alpha_{i} \in P_{\lambda}^{s_{i} w}$. If μ lies on a face, we might need to divide by $\left\langle\alpha_{i}, v \omega_{j}^{\vee}\right\rangle$.
That is at most 2 for classical types.
There is always an integer between two distinct elements of $\frac{1}{2} \mathbb{Z}$.

Theorem (Besson-Jeralds-K)

If G has all its simple factors of types A, B, C, or D, then $\operatorname{char}\left(V_{\lambda}^{w}\right)$ is saturated for every choice of λ and w.

Faces of Demazure Polytopes are Demazure Polytopes

Affine Types

In affine types, we ask the same question.
Now our Schubert varieties X_{w} are parametrized by the affine Weyl
group $w \in W_{a f}$.
Though they are defined inside the infinite-dimensional affine flag variety, they are still finite-dimensional.
The weight space question for V_{λ}^{w} is still a GIT question for the finite-dimensional torus \widehat{T} acting on X_{w}.

3 Families of Inequalities

We can still use GIT, but our one-parameter subgroups now come in three distinct flavors:

- η is conjugate to a dominant weight, or
- $-\eta$ is conjugate to a dominant weight, or
- $\langle\delta, \eta\rangle=0$

There will therefore be three different kinds of inequalities, due to the nature of deciding when

$$
P(\eta) q I / I \cap X_{w}
$$

is dense in X_{w}.

3 Families of Inequalities

First, we describe three Demazure actions. The monoid $\left(W_{a f}, *\right)$ acts on the set $W_{a f}$ in three different ways:

- Usual Demazure action: $w * v=\max \{q v \mid q \leq w\}$
- Opposite action: $w *_{-} v=\min \{q v \mid q \leq w\}$
- Semiinfinite action: $w * \frac{\infty}{2} v=\max _{\frac{\infty}{\frac{\infty}{2}}}\{q v \mid q \leq w\}$

Note that $\min (S)=\max _{\leq_{-}}(S)$, where \leq_{-}is the opposite Bruhat order in the opposite flag variety.

3 Families of Inequalities

Theorem (Besson-Jeralds-Hong-K)

$\mu \in P_{\lambda}^{w}$ if and only if, for all dominant fundamental coweights Λ_{j}^{\vee} and $v \in W_{a f}$,

$$
\left\langle\mu, v \Lambda_{j}^{\vee}\right\rangle \geq\left\langle\lambda, w^{-1} * v \Lambda_{j}^{\vee}\right\rangle
$$

and, for all dominant fundamental coweights Λ_{j}^{\vee} and $v \in W_{a f}$,

$$
\left\langle\mu, v \Lambda_{j}^{\vee}\right\rangle \leq\left\langle\lambda, w^{-1} *_{-} v \Lambda_{j}^{\vee}\right\rangle
$$

and, for all finite fundamental coweights ω_{j}^{\vee} and $v \in W_{\text {fin }}$,

$$
\left\langle\mu, v \omega_{j}^{\vee}\right\rangle \geq\left\langle\lambda, w^{-1} * \frac{\infty}{2} v \omega_{j}^{\vee}\right\rangle
$$

Example

Let $G=\widehat{\mathfrak{s l}}_{2}, \lambda=\Lambda_{0}+\Lambda_{1}$.

The pairings $\left\langle\alpha_{i}, v \eta\right\rangle$ can now be arbitrarily high, so as of yet we cannot apply the same approach to the saturation question.

Thank You

